Transit Strategy Harvard Case Solution & Analysis

TheCaseSolutions.com

Transit Strategy Harvard Case Solution & Analysis

TheCaseSolutions.com

Transit Photometry

A transit is defined as the passage of a planet between a star and the Earth

Image via NASA, ESA, G. Bacon (STSci)

Lightcurve Plots

HD209458b, first discovered, best known transiting planet. *Image via M. A. C. Perryman, 2000*

Advantages

With various methods of detection, why should we use the transit method?

Currently the most effective and sensitive method

- Searches occur on a massive scale
 Ground Based: TrES, OGLE, HAT, and WASP
 Space Based: Kepler, CoRoT

Provides information of planet characteristics

Currently the most effective and sensitive method

- Searches occur on a massive scale
 - Ground Based: TrES, OGLE, HAT, and WASP
 - Space Based: Kepler, CoRoT

Method of detection indicated by color. Green = transit, blue = radial velocity, red = direct imaging, orange = gravitational lensing.

Image via Wikimedia Commons/Aldaron)

Provides information of planet characteristics

Planet Size

$$\frac{\Delta L}{L} = \left(\frac{R_p}{R_*}\right)^2$$

• Planet Mass
$$v_{
m obs} = 28.4 rac{M_P \sin i}{P_{
m orb}^{1/3} M_*^{2/3}}$$

- Planet Density
- Atmospheric Composition
- Planet Temperature

Disadvantages

Can we see a transit?

Do we see a transit?

Is Transit Detected?

Transit Inclination

 $P(i)di = \sin idi$

- Transit Duration
 - · Non-continuous Observations
 - Eccentricity

False Positives

- Binary Stars
- · Limb Darkening and Sunspots

Image via Wikimedia Commans/Brocken Inaglory