Statistical Test for Final Project Harvard Case Solution & Analysis

TASK: Construct a model to predict whether a person makes over \$50.000 per year.

TheCaseSolutions.com

Pre-Processing

Feature	Type
age	INT
workclass	STRING
fnlwgt	INT
education	STRING
education-num	INT
marital-status	STRING
occupation	STRING
relationship	STRING
race	STRING
Sex	STRING
capital-gain	INT
capital-loss	INT
hours-per-week	INT
native-country	STRING
label	STRING

Input must be converted to normalized real numbers

Training & Testing

Training size	7.500
Test size	2.500
Total	10.000

Classifiers

Model	Accuracy
Decison tree	79.28%
Logistic Regression	83.08%
SVM	84%
Random Forest	85.05%

Accuracies of the classifiers

Further Analysis

of the Random Forest Classifier

Analysis of new data

Positives: 189 Negatives: 1811

Summary

- · Task: Determine if a person will earn more than \$50.000/year
- Training data set: 7500 entriesTesting data set: 2500 entries
- · Methods tested: (Decision Tree, Logistic Regression, SVM, Random Forest)
- Method chosen: Random Forest
- · Result: 189 out of 2000 will earn more than \$50.000/year

THANKS FOR LISTENING

Statistical Test for Final Project Harvard Case Solution & Analysis

TASK: Construct a model to predict whether a person makes over \$50.000 per year.

TheCaseSolutions.com

Pre-Pr

Feature	Туре
age	INT
workclass	STRING
fnlwgt	INT
education	STRING
education-num	INT
marital-status	STRING
occupation	STRING
relationship	STRING
race	STRING
sex	STRING
capital-gain	INT
capital-loss	INT
hours-per-week	INT
native-country	STRING
label	STRING

Pre-Processing

Feature	Type
age	INT
workclass	STRING
fnlwgt	INT
education	STRING
education-num	INT
marital-status	STRING
occupation	STRING
relationship	STRING
race	STRING
sex	STRING
capital-gain	INT
capital-loss	INT
hours-per-week	INT
native-country	STRING
label	STRING

Input must be converted to normalized real numbers

Training & Testing

Training size	7.500
Test size	2.500
Total	10.000

Classifiers

Testing

Decision tree classifier

- Flowchart-like structure
- Nodes represent "tests" on an attribute
- Branches represent the outcome of the test
- Leafs represent a class label
- The paths from root to leaf represent classification rules.

Logistic regression

The standard logistic function

$$F(x)=rac{1}{1+e^{-(eta_0+eta_1x)}}$$

Support Vector Machine

Constructs a hyperplane or set of hyperplanes to separate classes

Linear Machines Non-Linear Machines

Are the classes separated?

H1: No

H2: Yes, with a small margin

H3: Yes, with the maximum margin.

Random Forest

Constructs many decision trees to classify using majority voting

