

TONA Foundry
Thecasesolutions.com

Adriana Kuna
Ewelina Kuśmider
MD-IE-32



MD-IE-32

### Agenda

- 1. Modeling of foundary processes
- 2. Methodology of choosing right solution
- 3. Presentation of 2 problems:
  - 3.1 Choosing optimal model
  - 3.2 Analysis of CLF value
- 4. Conclusion

Thecasesolutions.com



CLF - Critical Liquid I

CONLSUSION PAR -> all samples are dif different shape

### Modeling of foundry processes

#### Thecasesolutions.com

Common rule of **metal casting**:

- 1. Fulfill the mold
- 2. Solidification and cooling
- 3. Removing from the mold by destroying or by die cast process



4 mm

### Application

#### Thecasesolutions.com

- a. Import model to Nova Flow Solid
  - b. Build a mesh discretization
    - dimension of cell 2,5mm
      - dimension of cell 3mm
      - dimension of cell 4mm
    - dimension of cell 5,21mm
  - c. Define material of the mold:

Brass - C85700 Initial temperature 1030 °C Green Sand



# Why dimension of cell is important? Thecasesolutions.com Decrease dimension of cell:

- -> total number of cell is higher
- -> calculation time will be higher
  - -> change quality of mesh
- **4 mm** gives us around 600k of cells.
  - **2,5 mm** gives us around 2500k of cells.

### Optimal number of dimension cells

### Thecasesolutions.com

We need **lower number** of dimension cells. We want to find defects, with high dimension we can not see it.

Low number of cells - easier to find porosity.

### Optimal model

### The casesolutions.com

We took into consideration:

solidification time

 (as short as possible)



 visual comparison (porosity which cause shrinkage after solidification)

## CLF - Critical Liquid Fraction How fast liquid solidify? Thecasesolutions.com

- Start from the border to the center
- Smaller dimension solidify faster than in the center
- When in the center occurs bubbles we can not provide too fast solidification

