Practical Regression: Noise, Heteroskedasticity, and Grouped Data

Practical Regression: Noise, Heteroskedasticity, and Grouped Data

Frequency

- -Provides more info than just a mean and standard deviation (SD)
- -Able to determine percentile ranks
- -Requires only 1 variable of any type

Elle	<u>E</u> dit	⊻iew <u>D</u> ata	Transform	Analyze	Direct Marketing	Graph	s <u>U</u> tiliti	les Add- <u>o</u> n	s <u>W</u> indow
4				Reports		-	10	M X	
				Descriptive Statistics			Frequencies		1 [
				Ta <u>b</u> les			B Descriptives		
		manufa	ct	Con	pare Means	-		plore	9
	1	Acura	Inte	Gen	eral Linear Model	· •			0
	2	Acura	TL	Gen	eralized Linear M	odels ▶	Crosstabs		0
	3	Acura	CL	Mixe	Mixed Models		Ratio		0
	4	Acura	RL	Con	relate		P-P Plots		0
	5	Audi	A4	Rea	ression	-	<u>₩</u> Q-	Q Plots	0
	6	Audi	A6		linear		30	23.555	0
	7	Audi	A8	_	ral Networks		30	39.000	0
	8	BMW	323	Clas			17	-	0
	9	BMW	328		ension Reduction		31	28.675	0
•	10	BMW	528	_		·	27	36.125	0
	11	Buick	Cen	Scal			51	12.475	0
	12	Buick	Reg	_	parametric Tests		50	13.740	0
	13	Buick	Parl		casting	•	51	20.190	0
	14	Buick	LeS	Sun		•	57	13.360	0
	15	Cadillac	DeV	Mult	iple Response	•	29	22.525	0
	16	Cadillac	Sev	Miss	sing Value Anal <u>y</u> s	is	13	27.100	0
	17	Cadillac	Elde	Mult	iple Imputation	-	36	25.725	0
	18	Cadillac	Cati	Con	nplex Samples	-	35	18.225	0
	19	Cadillac	Esc	Sim	ulation		35		1
- 2	20	Chevrolet	Cav	Qua	lity Control	-	19	9.250	0
- :	21	Chevrolet	Mal	Ø ROC	Curve		26	11.225	0
- 2	22	Chevrolet	Lun			24.0	29	10.310	0
- 2	23	Chevrolet	Mon	te Carlo		42.5	93	11.525	0
-	.,	A	0			00.4	00	42.005	

CAR_SALES.sav Example

Located at: C:/Program Files/IBM/SPSS/Statistics/20/ Samples/English/car_sales.sav

Frequency Command

TheCaseSolutions.com

Click Analyze -> Descriptive Statistics -> Frequencies

Dialog Box pops up

Transfer the variable you want the frequency for

(Manufacturer in this case)

Make sure "Display frequency tables" option is checked

Click "OK" for your output

Frequency Output

TheCaseSolutions.com

2 Sections:

- -Number of records with valid data (in this case 157 records)
- -Cumulative frequency distribution for each variable selected

Five columns:

- 1. A row for each value of the variable and additional rows for Total and Missing data
- 2. Frequency of each value
- 3. Percentage of all records for each value (including missing data)
- 4. Percentage of records for each value (not including missing data)
- 5. Cumulative percentages (last one will always be 100%)

Determining Percentile Ranks

Now using the variable PRICE

Analyze -> Descriptive Statistics -> Frequencies

Move "Price in thousands" to variables in dialog box

Click on "Statistics:

Click on "Quartiles." "Percentile(s)." "Mean." & "Median"

Input "80.0" for Percentiles (80th percentile)

Click "Add" to add it to the list

Click "Continue" and then "OK"

Output: Added rows for each piece of info you asked for Hint: "Quartiles" means 25th, 50th, 75th percentiles

Frequency Distributions for Multiple Variables

Use SAMPLE.sav data set from Chapter 1

Analyze -> Descriptive Statistics -> Crosstabs

Move "training" variable into "Row(s)" box

Move "work" variable into "Column(s)" box

(If more than 2 variables, enter them into unlabeled box under "Layer")

Click on "Cells" button, then "Row," "Column," and "Total" percentages. Click "Continue" and then "OK"

Output: Each level of each variable gets a row/column
A 'Total' row/column is also added
Each cell contains the number of participants
The percentages for each cell are also shown (adding up to 100% horizontally and vertically

Measures of Central Tendency and Measures of Dispersion for a Single Group

Measures of central tendency: mean, median, and mode Measures of dispersion: range and standard deviation

Standard Deviation is the square root of variance

When you find a mean, you must also find standard deviation When you find a median, you must also find range

