

TheCaseSolutions.com

The Case Solutions. com Portfolio Selection and the Capital Asset

Group A Wednesday, March 18, 2015

FIN: 4980

CAPM

CAPM

CAPM Era = Rf + Ba (Rm - Rf)

Let's take a closer look at the Market Risk Premium

The question we would all like to answer!

$$[E(R_M) - R_F)]$$

CADM Limitations / Data Estimates

CAPN

CAPM

CAPM Era = Rf + Ba (Rm - Rf)

Rf = the rate of return for a risk-free security

Rm = the broad market's expected rate of return

Ba = beta of the asset TheCaseSolutions.com

Example

Assume the following for Asset XYZ:

Rf = 3%

Rm = 10%

Ba = 0.75

By using CAPM, we calculate that you should demand the following rate of return to invest in Asset XYZ:

Era = 0.03 + [0.75 * (0.10 - 0.03)] = 0.0825 = 8.25%

TheCaseSolutions.com

CAPM

CAPM Era = Rf + Ba (Rm - Rf)

Rf = the rate of return for a risk-free security

Rm = the broad market's expected rate of return

Ba = beta of the asset TheCaseSolutions.com

Example

Assume the following for Asset XYZ:

Rf = 3%

Rm = 10%

Ba = 0.75

By using CAPM, we calculate that you should demand the following rate of return to invest in Asset XYZ:

Era = 0.03 + [0.75 * (0.10 - 0.03)] = 0.0825 = 8.25%

Jensen's Alpha

$$\alpha = Rp - [Rf + (Rm - Rf) \beta]$$

Rp = Realized return of portfolio

Rm = Market return

Rf = risk-free rate

Fama and French found the differences in Betas over lengthy periods didn't explain the performance of different stocks.

TheCaseSolutions.com

One reason CAPM's expected returns sometimes do not match actual returns is that Betas are unstable through time.

Conclusion

- No alternative model as widely used and taught as CAPM
- Every model has its pros and cons

One has to recognize the advantages and disadvantages of every model and find the one that is the most appropriate for certain investment/educational needs